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INTRODUCTION

Refill friction stir spot welding (RFSSW) is a 
relatively new solid-state butt-welding technique 
that uses friction and the joining of materials in-
duced by a rotating welding tool [1]. Friction be-
tween the welded elements creates heat, which 
causes their plastic fusion. RFSSW is similar 
to another technique called friction stir welding 
(FSW), which is used for linear welding [2, 3]. 
Currently, the most used welding technique is 
resistance spot welding (RSW) [4]. RFSSW dif-
fers from traditional thermal welding techniques 
in that it does not require melting the metal. This 
prevents cracks, pores, oxidation, and other de-
fects associated with the thermal welding cycle 

[5]. The RFSSW method is more tolerant when 
combining metal plates with different surfaces. 
The riveting method is a conventional technique 
used for joining materials and is prevalent in 
various industries such as machine building, 
steel structures, aerospace, and automotive sec-
tors [6]. This technique’s primary benefit is its 
advantageous cost-quality ratio [7]. Despite its 
versatility and proven effectiveness, riveting has 
a number of disadvantages and potential prob-
lems, especially when compared to more mod-
ern joining methods such as friction welding [8]. 
Riveting has drawbacks such as high time and la-
bor requirements, lower join tightness compared 
to welding, the necessity to reach both sides of 
the structural system being joined, and a higher 
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likelihood of corrosion and damage. Rivets cre-
ate concentrated loads in the structure, which can 
cause stress concentration and raise the likelihood of 
fatigue cracking, particularly in environments with 
high dynamic loads [9]. The technique imposes sig-
nificant limitations on structural design due to the 
requirements for rivet placement and access to rivet 
sites. Replacing riveting with the RFSSW technique 
can eliminate many of these problems [10]. Various 
factors limit the widespread adoption of RFSSW 
in the industry. These include challenges related to 
choosing the best RFSSW process parameters and 
accurately evaluating the weld quality [11, 12]. The 
efficiency of manufacturing processes is closely 
linked to the degree of automation they possess 
[13,14]. Information technologies, particularly those 
utilizing machine learning, are becoming increas-
ingly significant in the field of manufacturing con-
trol. Dynamic development focuses on methods like 
artificial neural networks, elastic net, support vector 
machine, LSTM, and other related techniques [15, 
16]. This study aims to develop a new predictive 
model based on machine learning to optimize the 
selection of RFSSW process parameters for achiev-
ing maximum shear load capacity in the joint [17, 
18]. Moreover, the research developed an improved 
algorithm enabling a percentage assessment of the 
quality of the RFSSW joint based on optical analy-
sis of the weld. The research is aimed at increasing 
the effectiveness of the RFSSW method, especially 
in relation to riveting and resistance welding, which 
will contribute to increasing the scale of applications 
of the RFSSW technique in industry. The paper is 
structured into several sections, beginning with an 
introduction that sets the context and objectives of 
the research. It proceeds with a literature review, 
discussing previous studies relevant to RFSSW and 
artificial intelligence applications in welding. The 
methodology section details the experimental setup, 
materials used, and procedure for data collection and 
analysis. Results are presented with a comprehensive 
discussion, interpreting the findings in the context of 
the research goals. The article concludes with a sum-
mary of the outcomes, implications for the industry, 
and suggestions for future research. This structure 
ensures a logical flow from background to findings, 
facilitating reader comprehension.

MATERIALS AND METHODS

This section details the procedure for testing a 
lap joint created through the RFSSW technique. It 

includes details about the materials, devices, and 
tools utilized for sample preparation, along with 
the procedure for testing the shear load capac-
ity of the joint. This section outlines algorithmic 
methods for predicting optimal process param-
eters and evaluating joint quality optically.

Technical description of RFSSW samples

The joint consisted of two sheets of differ-
ent thickness, corresponding to the stringer and 
skin in a thin-walled aerospace structure. It was 
assumed that both elements would be made of 
the same duralumin alloy, EN AW-7075-T6 Al-
clad, commonly used in aircraft structures. Alloy 
EN AW-7075-T6 Alclad is characterized by high 
static and fatigue strength, as well as low weight. 
Its ultimate tensile stress (Rm) is 540 MPa, and the 
yield stress (Rp0.2) ranges from 460 to 475 MPa. 
The main alloying additions are zinc (5.6%), 
magnesium (2.61%), and copper (1.35%). De-
spite many advantages, this material is difficult 
to form and weld and has relatively low corro-
sion resistance. For this reason, sheets used in 
the construction of thin-walled aircraft structures 
are clad with a thin layer of technical aluminum 
(approximately 5% of the thickness). Plating pro-
tects the alloy against intergranular corrosion by 
creating a layer of aluminum oxide on the sur-
face. The research focused on the lap joint of 
sheets of varying thickness, imitating the joint 
of the stringer and the covering in a thin-walled 
aircraft structure. EN AW-7075-T6 Alclad sheets 
were used with thicknesses corresponding to real 
aviation applications.

Figure 1 shows the refill friction stir spot weld-
ing process flow. The process can be divided into 
four main stages: landing, plunging, refilling, and 
retreating. In the first stage, the compression ring 
is placed on the top surface of the sheet, and the 
sleeve and pin begin to rotate and rub against the 
sheet, which plasticizes the metal and facilitates 
penetration. To push the plasticized metal into the 
cylindrical space that the pin’s upward movement 
creates, the sleeve and pin reciprocate. Once a 
certain plunge depth is reached, the directions of 
movement of the sleeve and pin begin to reverse, 
which causes the plastic metal to be squeezed back 
through the sleeve. Finally, the welding head is 
removed from the joined work pieces. The sleeve, 
which plunges into the base metal plate, plays a 
crucial role in the conventional RFSSW process. 
In the described experiments, a refill friction stir 
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spot welding machine type RPS100 from Harms 
& Wende GmbH & Co. KG was used. The device 
is characterized by a spindle speed of 3,000 rpm, 
an output power of 2.2 kW, plunge speeds up 
to 3.6 mm/s, and a maximum force of 11,000 N. 
Figure 2 shows the welding tool. Its purpose is 
to join two sheets of aluminum in an overlapping 
configuration, with the top sheet having greater 
thickness. This arrangement of sheets contributes 
to better joint load capacity. Samples consisting of 
two plates (sheets) were welded. The dimensions 
of the top plate (length × width × thickness) are 
120 × 30 × 1.6 mm. The dimensions of the bottom 
plate are 120 × 30 × 0.8 mm. The welding tool was 
used on the thicker (i.e., upper) side of the plate.

Shear load capacity test of RFSSW joint

Figure 3 shows a diagram of the installation for 
testing the load capacity of the RFSSW joint. The 
test included shear tests performed using a Zwick 
Roell Z-100 universal testing machine with a trans-
verse travel speed of 5 mm/min at room temperature, 
in accordance with the DIN EN ISO 14273 standard. 
In these tests, depending on the plunge depth of 
the tool, there are three types of joint damage: plug 
crack, shear crack, and plug-shear crack. The aim 
of the research was to select the parameters of the 
RFSSW welding process in order to maximize the 
load capacity of the joint. The selected input param-
eters were: tool rotational speed (rpm), tool plunge 

Figure 1. Phases of the refill friction stir spot welding process

Figure 2. The welding tool: (a) general view, (b) close-up
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Optimization of the RFSSW process 
using the SVM method

The support vector machines method was 
used to optimize the parameters of the friction 
welding process. SVMs are a strong machine 
learning algorithm that is able to be imple-
mented to classify as well as regress [19]. For 
SVMs, it does this by finding the hyperplane that 
separates the classes of data. This margin is de-
fined as the distance between the hyperplane and 
the hyperpoints, or support vectors, of the data 
points nearest to it for each class.

The SVMs have some strengths that make 
them good for small datasets. The first is the fact 
that the SVM is more immune from overfitting 
in comparison to many other machine learning 
algorithms, like, for example, neural networks. 
This is because SVM only gives attention to the 
support vectors, and the support vectors are the 
most critical points in the data that actually cat-
egorize the decision boundary. Second, SVM 
is more efficient compared to other machine 
learning algorithms. This is because SVMs only 
require a few support vectors to define the de-
cision boundary. This makes SVM suitable for 
real-time applications. Thirdly, it is more inter-
pretable than other machine learning algorithms. 
The interpretability of SVMs might be linked 
to the type of model. Since SVMs represent a 
simple linear model, it will not be hard to un-
derstand why a certain class is predicted by the 
SVM, which is helpful to debug and improve the 
model. In general, SVMs are a good choice for 
a problem of machine learning in which the da-
taset is small. They are more resistant to overfit-
ting, more efficient, and more interpretable com-
pared with other machine learning algorithms. 
MATLAB R2023b software was used to train 
the SVM model. Below is a detailed description 
of how the SVM model works. 

Input data

The SVM model is represented by a function 
that takes predictor data x and response data x as 
vectors or matrices. In this case, the variable x is 
a 50 × 3 matrix in which the columns are: tool 
rotational speed, tool plunge depth and welding 
time, respectively. The 50 rows of the x matrix 
contain the observations. Table 1 presents a set of 
50 measurements determining the parameters of 
the RFSSW process for 50 specimens.

depth (mm), and welding time (s). The selection of 
these three parameters results from the fact that pre-
vious research indicates a significant impact of both 
the tool rotational speed, welding time, and plunge 
depth on the mechanical strength and quality of the 
microstructure of the joint.

Research methodology

To achieve the research goal, 50 samples 
of joints made using the RFSSW method us-
ing identical metal plates were prepared. Each 
RFSSW sample was fabricated with different 
welding process parameters (tool rotational 
speed, tool plunge depth, and welding time). 
The samples were then photographed both from 
above and in cross-section. It should be noted 
that a cross-section photograph requires the de-
struction of the welded structure. Therefore, in 
real conditions, optical quality assessment is car-
ried out only on the basis of a photo of the weld 
in a top view. The evaluation of cross-sectional 
photographs was performed only for the purpose 
of validating the optical method. In the next 
phase of the research, a machine learning model 
was trained based on the support vector machine 
(SVM) method, enabling the optimal selection 
of welding parameters using the RFSSW meth-
od. In the next stage, an algorithmic method for 
quality control of the made joint was developed, 
using photos of welds.

Figure 3. Diagram for the shear test
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Kernel function

SVM uses a kernel function K to map the in-
put data into a higher-dimensional space where 
the data is linearly separable. The three popular 
kernel functions were tested: linear, polynomial, 
and radial basis function (RBF) [20]. The linear 
kernel function can be described by formula

  𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑦𝑦  (1) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐)𝑑𝑑  (2) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = exp (−𝛾𝛾||𝑥𝑥 − 𝑦𝑦||2)  (3) 

 

 𝐿𝐿 = 1
2 ||𝑤𝑤||2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + ξ𝑖𝑖

∗)𝑛𝑛
𝑖𝑖=1   (4) 

 

 𝑓𝑓(𝑥𝑥) =  wT𝜙𝜙(𝑥𝑥) +  𝑏𝑏  (5) 

 

 𝑦𝑦′ = 𝑓𝑓(𝑥𝑥′) = ∑ α𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥′)𝑛𝑛
𝑖𝑖=1 + 𝑏𝑏  (6) 

 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = 𝑚𝑚𝑚𝑚x(0, |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − 𝜖𝜖) (7) 

 

 Min objective =  log(1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (8) 

 

 𝜎𝜎𝐵𝐵
2(𝑡𝑡) = 𝜔𝜔0(𝑡𝑡)𝜔𝜔1(𝑡𝑡)[𝜇𝜇0(𝑡𝑡) − 𝜇𝜇1(𝑡𝑡)]2  (9) 

 

 (1)
where: x and y are data vectors.

Finally, the linear type of kernel was used in 
the model. In the research also other kernel mod-
els were tested, namely polynomial and RBF. The 
polynomial kernel is described by the formula

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑦𝑦  (1) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐)𝑑𝑑  (2) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = exp (−𝛾𝛾||𝑥𝑥 − 𝑦𝑦||2)  (3) 

 

 𝐿𝐿 = 1
2 ||𝑤𝑤||2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + ξ𝑖𝑖

∗)𝑛𝑛
𝑖𝑖=1   (4) 

 

 𝑓𝑓(𝑥𝑥) =  wT𝜙𝜙(𝑥𝑥) +  𝑏𝑏  (5) 

 

 𝑦𝑦′ = 𝑓𝑓(𝑥𝑥′) = ∑ α𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥′)𝑛𝑛
𝑖𝑖=1 + 𝑏𝑏  (6) 

 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = 𝑚𝑚𝑚𝑚x(0, |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − 𝜖𝜖) (7) 

 

 Min objective =  log(1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (8) 

 

 𝜎𝜎𝐵𝐵
2(𝑡𝑡) = 𝜔𝜔0(𝑡𝑡)𝜔𝜔1(𝑡𝑡)[𝜇𝜇0(𝑡𝑡) − 𝜇𝜇1(𝑡𝑡)]2  (9) 

 

 (2)
where: c is a constant, d is the degree of the 

polynomial.

The function (3) refers to RBF method

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑦𝑦  (1) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐)𝑑𝑑  (2) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = exp (−𝛾𝛾||𝑥𝑥 − 𝑦𝑦||2)  (3) 

 

 𝐿𝐿 = 1
2 ||𝑤𝑤||2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + ξ𝑖𝑖

∗)𝑛𝑛
𝑖𝑖=1   (4) 

 

 𝑓𝑓(𝑥𝑥) =  wT𝜙𝜙(𝑥𝑥) +  𝑏𝑏  (5) 

 

 𝑦𝑦′ = 𝑓𝑓(𝑥𝑥′) = ∑ α𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥′)𝑛𝑛
𝑖𝑖=1 + 𝑏𝑏  (6) 

 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = 𝑚𝑚𝑚𝑚x(0, |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − 𝜖𝜖) (7) 

 

 Min objective =  log(1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (8) 

 

 𝜎𝜎𝐵𝐵
2(𝑡𝑡) = 𝜔𝜔0(𝑡𝑡)𝜔𝜔1(𝑡𝑡)[𝜇𝜇0(𝑡𝑡) − 𝜇𝜇1(𝑡𝑡)]2  (9) 

 

 (3)

where: y is a scaling parameter.

Optimization

SVM solves an optimization problem that in-
volves minimizing a cost function L

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑦𝑦  (1) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐)𝑑𝑑  (2) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = exp (−𝛾𝛾||𝑥𝑥 − 𝑦𝑦||2)  (3) 

 

 𝐿𝐿 = 1
2 ||𝑤𝑤||2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + ξ𝑖𝑖

∗)𝑛𝑛
𝑖𝑖=1   (4) 

 

 𝑓𝑓(𝑥𝑥) =  wT𝜙𝜙(𝑥𝑥) +  𝑏𝑏  (5) 

 

 𝑦𝑦′ = 𝑓𝑓(𝑥𝑥′) = ∑ α𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥′)𝑛𝑛
𝑖𝑖=1 + 𝑏𝑏  (6) 

 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = 𝑚𝑚𝑚𝑚x(0, |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − 𝜖𝜖) (7) 

 

 Min objective =  log(1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (8) 

 

 𝜎𝜎𝐵𝐵
2(𝑡𝑡) = 𝜔𝜔0(𝑡𝑡)𝜔𝜔1(𝑡𝑡)[𝜇𝜇0(𝑡𝑡) − 𝜇𝜇1(𝑡𝑡)]2  (9) 

 

 (4)

where: w is the weight vector, ξ and ξ* are slack 
variables, C is a regularization parameter, 
and n is the number of samples.

Model

After optimization, the SVM model is repre-
sented by formula (5)

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑦𝑦  (1) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐)𝑑𝑑  (2) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = exp (−𝛾𝛾||𝑥𝑥 − 𝑦𝑦||2)  (3) 

 

 𝐿𝐿 = 1
2 ||𝑤𝑤||2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + ξ𝑖𝑖

∗)𝑛𝑛
𝑖𝑖=1   (4) 

 

 𝑓𝑓(𝑥𝑥) =  wT𝜙𝜙(𝑥𝑥) +  𝑏𝑏  (5) 

 

 𝑦𝑦′ = 𝑓𝑓(𝑥𝑥′) = ∑ α𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥′)𝑛𝑛
𝑖𝑖=1 + 𝑏𝑏  (6) 

 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = 𝑚𝑚𝑚𝑚x(0, |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − 𝜖𝜖) (7) 

 

 Min objective =  log(1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (8) 

 

 𝜎𝜎𝐵𝐵
2(𝑡𝑡) = 𝜔𝜔0(𝑡𝑡)𝜔𝜔1(𝑡𝑡)[𝜇𝜇0(𝑡𝑡) − 𝜇𝜇1(𝑡𝑡)]2  (9) 

 

 (5)

where:  wT is the weight vector, ϕ(x) is the feature 
mapping function, and b is the bias term.

Prediction

For a new data point x', the SVM model pre-
diction is given by (6)

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑦𝑦  (1) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑐𝑐)𝑑𝑑  (2) 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = exp (−𝛾𝛾||𝑥𝑥 − 𝑦𝑦||2)  (3) 

 

 𝐿𝐿 = 1
2 ||𝑤𝑤||2 + 𝐶𝐶 ∑ (ξ𝑖𝑖 + ξ𝑖𝑖

∗)𝑛𝑛
𝑖𝑖=1   (4) 
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where:  α are the Lagrange multipliers, and  is the 
kernel function.

Tuning model parameters
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deviations smaller than ϵ In the Equation 5, ϕ(x) 
denotes a function that maps input x into a higher-
dimensional space affected by KernelScale. The 
key parameters of the objective SVM function are 
Epsilon, BoxConstraint and KernelScale. 
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where: y is the true value, f(x) is the predicted 
value, ϵ is a predetermined error tolerance 
threshold. 

If the difference between the true value and 
the predicted value is less than ϵ, the loss is zero. 
Otherwise, the loss is equal to the difference be-
tween the absolute error and ϵ. Epsilon speci-
fies the width of the “no-penalty” band around 
the regression function, within which errors are 
not penalized. This parameter directly affects the 
model’s flexibility in fitting the training data. 

BoxConstraint (C) in formula (4) is a regulariza-
tion parameter that controls the trade-off between 
maintaining the ϵ-margin and maximizing the mar-
gin between different data points. A higher C value 
pushes the model to fit the training data more pre-
cisely, which can lead to overfitting. It determines 
the “hardness” of the error margin in the SVR model. 

The KernelScale (y for RBF) influences the 
kernel function, enabling the model to handle 
non-linearities. For the RBF kernel, y controls the 
“width” of the Gaussian function’s bell, impact-
ing the model’s complexity and its ability to cap-
ture dependencies in the data.

SVM often utilizes kernel functions to project 
input data into a higher-dimensional space, making 
it easier to find a linear separator (for regression, a 
line of best fit). An example is the RBF, defined as 
Equation (3), where  is the inverse of KernelScale.

Figure 4 illustrates the process of optimizing 
the parameters of the SVM function. The process 
involved 30 iterations. Formula (8) represents the 
optimized fitness function, which aims to mini-
mize the objective.
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Table 1. RFSSW process parameters and joint shear load capacity

Specimen #
Inputs Output

Tool rotational speed (rpm) Plunge depth (mm) Welding time (s) Shear load capacity (N)

1 2800 1.5 1.5 7805

2 2800 1.5 2.5 7805

3 2800 1.5 3.5 7035

4 2800 1.7 1.5 7060

5 2800 1.7 2.5 6980

6 2800 1.7 3.5 6920

7 2800 1.9 1.5 6210

8 2800 1.9 2.5 5280

9 2800 1.9 3.5 5080

10 2400 1.5 1.5 7170

11 2400 1.5 2.5 6470

12 2400 1.5 3.5 7640

13 2400 1.7 1.5 6540

14 2400 1.7 2.5 6020

15 2400 1.7 3.5 7110

16 2400 1.9 1.5 5400

17 2400 1.9 2.5 5700

18 2400 1.9 3.5 7080

19 2000 1.5 1.5 6850

20 2000 1.5 2.5 6980

21 2000 1.5 3.5 7010

22 2000 1.7 1.5 6740

23 2000 1.7 2.5 6640

24 2000 1.7 3.5 6980

25 2000 1.9 1.5 5670

26 2000 1.9 2.5 5450

27 2000 1.9 3.5 7390

28 2200 1.6 2 6703

29 2200 1.7 2 8196

30 2200 1.5 2.5 6457

31 2200 1.7 3 6705

32 2400 1.6 2 6367

33 2400 1.7 2 6573

34 2400 1.6 2.5 6830

35 2400 1.8 2.5 5830

36 2400 1.5 3 6556

37 2400 1.6 3 6584

38 2400 1.7 3 6451

39 2400 1.8 3 5215

40 2600 1.6 2 7315

41 2600 1.7 2 6671

42 2600 1.8 2 6156

43 2600 1.5 2.5 6892

44 2600 1.6 2.5 7232

45 2600 1.7 2.5 6748

46 2600 1.8 2.5 6166

47 2600 1.5 3 6141

48 2600 1.6 3 7682

49 2600 1.7 3 6341

50 2600 1.8 3 6916



51

Advances in Science and Technology Research Journal 2024, 18(3), 45–57

As it was said, in the context of SVM, Box-
Constraint, KernelScale, and Epsilon are critical 
hyperparameters adjusted to optimize the mod-
el’s performance. Their optimal values are typi-
cally determined using methods like grid search 
or Bayesian optimization, aiming to minimize 
prediction error on validation or test sets while 
preventing overfitting. This nuanced balance be-
tween accuracy and generalizability is pivotal for 
crafting robust regression models capable of tack-
ling real-world data challenges.

Training the SVM model

A set of 50 measurements that determine the 
parameters of the RFSSW process for 50 speci-
mens is listed in Table 1. The independent (input) 
variables are: spindle revolutions (rpm), plunge 
depth (mm), and welding time (s). The dependent 
variable (output) is shear load capacity (N). The 
data set was randomly divided into a training set 
(40 observations) and a test set (10 observations).

RESULTS AND DISCUSSION

SVM model quality analysis

Table 2 shows the results of training three 
variants of the SVM model, differing in the ker-
nel function. It presents a comparative analysis 

of linear, radial basis function, and polynomial 
kernels, displaying the RMSE and R values for 
each type of kernel. Root Mean Square Error 
(RMSE), correlation coefficient (R), and cosine 
similarity (CS) index were used as measures for 
assessing the quality of the model [21]. The CS 
metric returns a value between -1 and 1, where 1 
indicates the vectors are in the same direction, 0 
indicates orthogonality, and -1 indicates opposite 
directions.

The models exhibit diverse performances, 
with each kernel type yielding distinct RMSE, R, 
and CS values. The RBF kernel and linear kernel 
both have a R value of 0.95, but the RBF kernel 
has a lower RMSE of 257.9 compared to 687.9 
for the linear kernel. Although the polynomial 
kernel has a correlation coefficient of 0.94, it ex-
hibits a lower RMSE of 540.8 compared to the 
linear kernel. All three kernel types have almost 
identical CS index values, and they are very high.

Choosing the superior model in this situation 
relies on the prioritization of performance met-
rics. When aiming to maximize the linear rela-
tionship between predicted and actual values by 
focusing on the R value, both the RBF and lin-
ear kernels perform equally well, achieving a R 
value of 0.95. The RMSE becomes crucial when 
predictive accuracy, which is the degree of simi-
larity between predicted and actual values, is pri-
oritized. The RBF kernel is the preferred choice 
because it has a much lower RMSE, suggesting 
greater precision in predictions.

The discrepancy between the RMSE and R 
values indicates that while the linear kernel effec-
tively captures the data trend (as indicated by the 
high R value), its predictions, on average, devi-
ate more from the actual values compared to the 
RBF kernel. The linear model may be more sensi-
tive to outliers and have a less adaptable decision 
boundary compared to the RBF kernel, which is 
recognized for its ability to handle non-linear data 
patterns.

The RBF kernel model is the most balanced 
choice, displaying a strong correlation with the 
actual values and superior predictive accuracy. 

Figure 4. Min objective vs. Number 
of function evaluations

Table 2. Quality assessment indicators of SVM model variants for different kernels 

Kernel type RMSE R Cosine Similarity (CS)

Linear 687.9 0.95 0.9953

RBF 257.9 0.95 0.9944

Polynomial 540.8 0.94 0.9963
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This analysis highlights the significance of taking 
into account both R and RMSE when evaluating 
and selecting models. The RMSE demonstrates 
that a model with a strong correlation does not al-
ways ensure a close match between predicted and 
actual values. Therefore, when accurate predic-
tions are crucial, the model with the lower Root 
Mean Square Error (RMSE), such as the RBF ker-
nel in this instance, would be considered superior. 

Figures 5–10 depict a graphical analysis of 
SVM kernel variations. This analysis combines 
visual and quantitative data to demonstrate the de-
tailed effectiveness of each kernel in representing 
complex datasets. Figures 5 and 6 display scatter 
plots and regression plots using a linear kernel for 
10 test cases. Figures 7 and 8 correspond to the 
RBF kernel, while Figures 9 and 10 refer to the 
polynomial kernel.

The linear kernel SVM shows a strong linear 
correlation between predicted and actual values, 
despite having a significant RMSE of 687.9, as 
shown in the scatter and regression plots. This 
error magnitude indicates significant deviations, 
suggesting that although the model captures the 
overall trend, there are still notable inaccuracies 
in its predictions. A correlation coefficient R of 
0.95 means that the data points are close to the 
regression line. This means that the prediction is 
very accurate, and the linear connection is strong. 
The RMSE indicates a spread of data points sig-
nificant enough to explain a considerable average 
error. The RBF kernel SVM shows a more intri-
cate relationship, with a lower RMSE of 257.9 
indicating a better fit to the data and therefore 
smaller discrepancies between the actual and pre-
dicted values. The improved performance shows 
that the kernel has a superior ability to capture the 
complexities of the dataset. The regression plot 
using the RBF kernel is expected to closely match 
the distribution of data points, with a high R value 

indicating a strong fit. The decreased RMSE indi-
cates a tighter grouping of data points around the 
curve, demonstrating the RBF kernel’s ability to 
adjust to the complexity of the data.

The polynomial kernel SVM strikes a balance 
between the simplicity of the linear model and the 
complexity of the RBF kernel, placing it in an in-
termediate position. The RMSE of 540.8 indicates 
moderate discrepancies between the actual and 
forecasted values. This moderate performance 
demonstrates the polynomial kernel’s ability to 
represent relationships that are not purely linear 
or excessively intricate. The R value of 0.94, 
slightly lower than the linear and RBF kernels, 
along with the intermediate RMSE, indicates a 
dispersion pattern where data points follow the 
polynomial curve but have a broader distribution 
compared to the RBF kernel. This detailed analy-
sis uncovers inherent compromises in choosing 
models for SVM applications. The linear kernel 
tends to have higher prediction errors even with 
strong linear relationships, while the RBF kernel 
performs better by accurately capturing complex 
data patterns, leading to lower deviations and 
tighter clustering of data points. The polynomial 

Figure 5. SVM with a linear kernel, 
RMSE = 687.9, R = 0.95

Figure 6. Regression plot of SVM with a 
linear kernel, RMSE = 687.9, R = 0.95

Figure 7. SVM with a RBF kernel, 
RMSE = 257.9, R = 0.95
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kernel demonstrates a balanced performance in 
modeling various relationships, showing moderate 
deviations and dispersion of data points around the 
regression curve. The selection of kernels in SVM 
models is a crucial factor in optimizing model per-
formance, underscoring the significance of kernel 
choice in achieving precise and dependable predic-
tive modeling in diverse applications.

Optical investigation of the welded joint

An algorithm utilizing Otsu’s thresholding 
method was created to enhance the inspection pro-
cess of welds produced through the RFSSW tech-
nique. Nobuyuki Otsu developed the Otsu method, 
a global thresholding technique used to convert 
grayscale images into binary images [22]. The 
method relies on maximizing the variance between 
black and white pixels to minimize the variance 
within each class. The objective is to determine the 
threshold that effectively divides the pixels into two 
categories, foreground and background, by mini-
mizing the variance within each category and maxi-
mizing the variance between the two categories.

Given a grayscale image, let’s denote the pix-
els’ intensities by L , where L = 0, 1,…, L-1 (for 
an 8–bit image, L = 256 ). The number of pixels at 
each intensity level i is denoted by ni, and the total 
number of pixels in the image is 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝐿𝐿−1

𝑖𝑖=0 . 
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. The 
probability of occurrence of an intensity level  in 
the image is given by 
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The Otsu method involves iterating through all 

possible thresholds  and calculating the between-
class variance 
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. The 
variance between classes is calculated as:
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 (9)

where: ω0(t) and ω1(t) are the probabilities of the 
two classes separated by the threshold t;  
and μ1(t) are the mean intensities of these 
two classes.

Otsu’s method is highly regarded for its sim-
plicity and efficiency in image segmentation, par-
ticularly when the image’s histogram indicates a 
clear threshold for separating the foreground and 
background. This study created an algorithm utiliz-
ing Otsu thresholding. The algorithm’s operation 
can be succinctly outlined in the following steps:
 • Load the target image from a specified path.
 • Convert the image to grayscale.
 • Segment the grayscale image into binary us-

ing Otsu’s thresholding method. Calculate and 
print the black-to-white pixel ratio.

 • Magnify and display the grayscale image for 
better visualization.

 • Specify the number of color levels for 
segmentation.

 • Segment the grayscale image into the speci-
fied number of color levels.

 • Convert the segmented image to a color image 
using a predefined color map. Optionally, swap 
specific colors in the segmented color image.

 • Display the color-segmented image with ad-
justments for better visualization.

 • Calculate and display the percentage of the 
image occupied by each color level excluding 
a specified background level,

 • Modify the image by making the background 
white and recalculating color fractions exclud-
ing the background.

 • Display the modified image with updated col-
or fractions and a customized color bar.

The algorithm being discussed is designed for 
manipulating and analyzing images using MAT-
LAB R2023b, a well-known environment known 
for its advanced image processing capabilities. 
The process starts with obtaining an image, which 
is then transformed into a grayscale version. This 
transformation is crucial as it simplifies the im-
age by reducing it to a single luminance channel, 
making it easier to analyze and manipulate.

The script uses Otsu’s method after the initial 
preprocessing to segment the image into a binary 
format by categorizing pixels as black or white 
based on a threshold determined automatically. 
The binary segmentation is important for distin-
guishing various features in the image. The script 
then quantifies this distinction by calculating the 
ratio of black to white pixels. This ratio provides 

Figure 8. Regression plot of SVM with a 
RBF kernel, RMSE = 257.9, R = 0.95
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information about how features are spread and 
how common they are in the image.

The script progresses to color segmentation, 
starting with magnifying the grayscale image to 
improve visibility. The multithresh function is used 
to establish multiple thresholds, which results in 
segmenting the image into different color levels. 
The imquantize function applies specified thresh-
olds to segment an image, which is then converted 
to a color image. This conversion simplifies distin-
guishing segments visually and adds complexity 
by assigning grayscale segments to a specific color 
range. The script can manipulate specific colors in 
the segmented image, such as swapping cyan and 
blue colors. This process entails detecting pixels of 
a specific color (cyan) and changing their color val-
ues to a designated target color (blue). The script 
does not include a reciprocal color swap feature, 
but instead concentrates on converting cyan to blue 
unilaterally.During later analysis stages, the script 
computes the proportion of the image that each col-
or level occupies, specifically omitting a predeter-
mined background level. This exclusion is essential 
to concentrate the analysis on relevant aspects of 
the image. The script changes the image by mak-
ing the background white and adjusting the color 
fractions to exclude the background. This altera-
tion highlights specific features by removing the 
background from the analysis. The script includes 
visual representations of the processed images 
at different stages, such as grayscale, binary, and 
color-segmented versions. The visual representa-
tions, along with numerical data like the proportion 
of each color level, offer a thorough summary of 
the image’s characteristics and how they are spread 
out. The script provides a systematic method for 

image processing, including grayscale conversion, 
binary and color segmentation, color manipulation, 
and quantitative analysis. This complex procedure 
provides valuable insights into the composition and 
characteristics of the image, demonstrating its po-
tential as a tool for advanced image analysis.

Assessment of weld quality based 
on image segmentation

Figures 11, 12, and 13 display image sets for 
inspecting welds. Macrostructural photos (a and d) 
were taken using an Opta-Tech X2000 stereoscopic 
microscope. Images (a–c) display the weld from a 
top view. Image a) displays an unedited photograph 
of the weld. Image b) displays the weld following 
binary segmentation into black and white. The ab-
sence of sufficient details hinders the practical use of 
this image for inspection. Image c) displays a color 
image of the weld divided into three color fractions. 
This color segmentation method enables the extrac-
tion of a greater amount of information. By analyz-
ing the proportions of individual color fractions, we 
can determine the percentage share of each color in 
the weld image. Colors must be interpreted correct-
ly to understand their significance. The red color 
marks the boundary between the metal plasticized 
with the welding tool and the unplasticized metal. 
Therefore, the minimum red color fraction can be 
considered an indicator of a well-executed weld. In 
Figure 11c, the red fraction is only 6.92%. The red 
color represents 10.29% in Figure 13c and 40.64% 
in Figure 12c, indicating a decrease in weld load 
capacity. Figures 11–13 (d–f) depict cross-sections 
of the welds displayed in images (a–c). Image d) 
displays a magnified unprocessed photograph of 

Figure 11. Inspection of the weld of specimen #1: (a) top view-photo, (b) top view-binary 
segmentation, (c) top view-three-color segmentation, (d) cross-section-photo, (e) cross-

section-binary segmentation, (f) cross-section transverse-three-color segmentation.
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the weld cross-section. Image e) is a binary graphic 
that contains less information than image f). The 
distribution of individual color fractions can only 
be interpreted and their percentage aspect ratios 
calculated in the color image f). Differences in op-
tical equipment used to capture photos of welds 
from different perspectives result in variations in 
color interpretation between images (d–f) and im-
ages (a–c). The proposed method stands out from 
current quality assessment techniques primarily 
due to its automation and precision, facilitated by 
the application of machine learning and image seg-
mentation. This automation significantly reduces 
the potential for human error, offering a more ob-
jective and precise assessment of weld quality. 
Furthermore, the SVM model’s ability to predict is 

different from traditional methods of trial-and-error 
or empirical optimization. This makes it possible to 
choose the best welding parameters ahead of time 
to ensure better weld quality. The way of perform-
ing comprehensive quality assessment through 
detailed optical analysis goes beyond the capabil-
ities of traditional techniques. This approach not 
only evaluates the physical attributes of the weld 
but also provides insights into quality aspects that 
are challenging to assess manually. The efficiency 
and cost-effectiveness of this automated method 
could lead to significant savings in time and labor 
for quality control processes, making it an appeal-
ing option for industries seeking to enhance their 
welding operations. Specifically designed to ad-
dress the challenges associated with assessing the 

Figure 12. Inspection of the weld of specimen #2: (a) top view-photo, (b) top view-binary 
segmentation, (c) top view-three-color segmentation, (d) cross-section-photo, (e) cross-

section-binary segmentation, f) cross-section transverse - three-color segmentation.

Figure 13. Inspection of the weld of specimen #3: (a) top view - photo, (b) top view-binary 
segmentation, (c) top view-three-color segmentation, (d) cross-section-photo, (e) cross-

section-binary segmentation, (f) cross-section transverse-three-color segmentation.
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quality of thin RFSSW joints, the proposed method 
meets a critical need in sectors where such joints 
are common. Its capacity to accurately evaluate 
these specialized welds underscores its potential for 
broad adoption in relevant industries. 

CONCLUSIONS

Based on three key process parameters—tool 
rotational speed, tool plunge depth, and welding 
time—this study presents an improved method 
for predicting the load capacity of a weld that was 
made using the Refill Friction Stir Spot Welding 
(RFSSW) technique. The method was developed 
in order to improve the accuracy of the prediction. 
The SVM (support vector machines) machine 
learning method was utilized in order to train a 
highly effective predictive model. This model 
was trained on the data set that was obtained as a 
result of actual measurements. This is a predictive 
model that can be utilized as a fitness function in 
order to optimize the selection of welding pro-
cess parameters during the RFSSW process. A vi-
sual RFSSW joint inspection technique was also 
developed using image segmentation based on 
Otsu’s thresholding method. The main findings 
of the presented research are: Efficient optimiza-
tion of welding parameters. The application of 
the SVM method for the optimization of RFSSW 
process parameters has demonstrated significant 
efficacy. The optimized parameters have directly 
contributed to enhancing the shear load capacity 
of the joints, a critical measure of weld quality. 
Predictive model performance. The SVM model, 
especially with the radial basis function (RBF) 
kernel, got an RMSE of 257.9, which shows that 
it was very good at figuring out how much shear 
load the joints could handle. Additionally, a cor-
relation coefficient (R) of 0.95 was observed, sig-
nifying a strong linear relationship between pre-
dicted and actual values, showcasing the model’s 
reliability. Automated quality assessment. The 
development of an automated quality assessment 
algorithm utilizing image segmentation based on 
Otsu’s thresholding method represents a signifi-
cant advancement. This technique allows for the 
detailed and objective analysis of weld quality, 
surpassing traditional manual inspection methods 
in both speed and precision.

Improvement over traditional techniques. The 
combination of the SVM predictive model and 
the Otsu-based image segmentation algorithm for 

weld inspection marks a notable improvement 
over existing manual and empirical methods. This 
advancement not only enhances the accuracy of 
weld quality assessment but also contributes to 
the efficiency of the welding process by enabling 
the selection of optimal parameters through auto-
mation. Potential for the Industry 4.0 revolution. 
The findings underscore the potential of the pro-
posed method to revolutionize the RFSSW tech-
nique’s application across various industries. By 
automating the optimization of process parameters 
and quality assessment, the presented method can 
significantly reduce labor intensity, costs, and dura-
tion of the welding process while simultaneously 
improving the quality and load capacity of the welds. 
RFSSW process optimization can be algorithmical-
ly automated using both the SVM predictive model 
and the Otsu inspection model. The RFSSW weld-
ing process typically involves the selection of op-
timal parameters through the use of manual labor 
at the present time. Automation will bring about a 
number of benefits, including the reduction of costs, 
labor intensity, and duration of the welding process, 
the enhancement of the quality and load capac-
ity of the joint, and the facilitation of automation. 
Overall, this research presents a promising AI-based 
approach for welding quality assessment, offering 
significant improvements over existing methods in 
terms of automation, precision, predictive optimiza-
tion, and comprehensive evaluation.
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